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Abstract A genetic algorithm based multiple linear

regressions (GA-MLR) method was applied for quantita-

tive structure property relationship (QSPR) modeling of

stability constants for 65 complexes of 1,4,7,10,13-pen-

taoxacyclopentadecane ethers (15C5) with sodium cation

(Na?). The best subset of molecular descriptors was

selected with genetic algorithm subset selection procedure,

to a variety of theoretical molecular descriptors, calculated

by the Dragon software. The MLR model was developed

with particular attention to external validation and appli-

cability domain (AD). The validation was performed on

the internal and external validation sets. The QSPR

model presented in this study showed most accurate pre-

dictions with the leave one out cross validated variance

(Q2
loo�cv = 0.88) and the external-validated variance

(Q2
ext = 0.82). The AD of the models was analysed by the

leverage approach.

Keywords 15-Crown-5 ethers � Stability constant � QSPR
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Introduction

Crown ethers are an important class of macrocyclic com-

pounds in supramolecular chemistry, and have gained

much attention for their ability to form stable complexes

with metal ions within their central cavity by right of ion–

dipole interaction. Furthermore, crown ethers exhibit fine

complex selectivity for metal and ammonium ions, and it is

decided by complementary size matching of ionic radii and

the ligand cavity and the crown structure, leading to

excellent recognition properties for metal ions [1–6].

The selective complexing properties of crown ethers

with metal ions have enabled them to be extensively used

in many areas, such as metal ion adsorption and separation,

preconcentration and determination [7, 8], selective trans-

port [9], preparing ion selective electrode [10–12] phase-

transfer catalysis in organic synthesis [13–15], neutral

carrier in constructing of ion sensors [16] and so on.

QSPR approach is based on the assumption that the

behavior of a compound, expressed by any simple and

complex physicochemical properties, is correlated with

numerical descriptors of the compound. In the development

of a mathematical relationship between the structure

descriptors and the property, the commonly used linear

methods, such as multiple linear regression (MLR) [17],

principal component regression (PCR) [18] and partial

least squares (PLS) [19, 20], and non-linear models, such

as radial basis function neural network (RBFNN) [21, 22]

can be used.

It should be noted that there are not many publication on

structure–property modeling of crown-ether complexes

with metals. The previous quantitative structure–properties

relationship (QSPR) studies on the complexes of macro-

cyclic polyethers with alkali cations including neural net-

work modeling of Gakh et al. [23] were reported on the

limited set of simple crown ether complexes and this

simple computational scheme had an average accuracy of

0.3 logK units. Multiple linear regression studies by Shi

et al. [24] on 314 cation-macrocycle-solvent systems

resulted in the standard errors in logK range from 1.42 in

the largest system to 0.36 in the smallest. The substructural

molecular fragments by Varnek et al. [25] was applied to

assess stability constants of the complexes of crown ethers
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with alkali cations in methanol; several model including

different fragment sets coupled with linear or nonlinear

fitting equations were applied for the data sets. They used

the additional descriptor named cyclicity and obtained the

results for standard error of predicted logK range from 0.16

to 0.22 for sodium ion cation. Recently QSPR model for

the stability constants of 58 complexes of 15C5 with metal

ion K? was established with the CODESSA program by

Ghasemi et al. [26]. The proposed model had an average

accuracy of 0.10 logK units.

The primary purpose of this work is establish a accurate

QSPR modeling between the molecular descriptors of 65

15C5 ethers and the stability constants measured in dif-

ferent labs. To perform this analysis, as a powerful tool,

genetic algorithm based multivariate linear regression

(GA-MLR) is applied as variable selection method [27,

28]. The most important aspect of the proposed QSPR

model is verifying the chemical applicability domain by the

leverage approach. Finally, finding the important structural

descriptors influencing the binding constant will give us

some invaluable information for future research.

Materials and methods

Data set

The chemical structures and experimental value for the

stability constants of 65 sodium ion complexes of 15C5

derivatives selected from the literature [29] are presented in

Tables 1 and 2, respectively. Since the temperature and

solvent also affect the stability constants, we used only data

obtained at 298 K and just in methanol. The data set was

randomly split into the calibration, prediction and valida-

tion sets (35 calibration samples, 15 prediction samples and

15 validation samples). The calibration and prediction sets

were used to build and optimize the QSPR model and the

external validation set was used to evaluate the prediction

power of the obtained model. Experimental logK values

vary from 2.72 to 3.89, 2.79 to 3.91, and 2.74 to 3.9 for

calibration, prediction, and validation sets respectively.

Molecular optimization and descriptor calculation

All calculations were run on a Pentium IV personal com-

puter with windows XP as operating system. The structures

were drawn in HyperChem 7.5 [30] and the geometrical

structure of ligand molecules was optimized using semi-

empirical quantum method Austin Method 1 (AM1) [31]

using the Polack–Rabiere algorithm until the root mean

square gradient was 0.01 within the MOPAC [32] program

package. The geometry and other information from the

output of quantum chemical calculations were inserted into

the Dragon [33] program, and descriptors for ligands were

calculated. All these descriptors are derived solely from

molecular structure and do not require experimental data to

be calculated. More than 466 molecular descriptors is

derived to properly characterize the chemical structure of

the 65 15C5 derivatives, involving variables of the type

Constitutional, Topological, GETAWAY (GEometry,

Topology and Atoms-Weighted AssemblY), WHIM

(Weighted Holistic Invariant Molecular descriptors), 3D-

MoRSE (3D-Molecular Representation of Structure based

on Electron diffraction), Aromaticity Indices.

Variable selection with genetic algorithm

The GA is a powerful search technique based on the evo-

lution of biological systems [34]. It is used to find

approximate solutions of combinatorial optimization

problems based on Darwinian biological evolution princi-

ple. In the GA, possible solutions of a given problem are

represented by bit strings, and it is optimized toward better

solutions by applying genetic operators such as selection,

crossover and mutation. In each generation, individuals are

decoded and fitness values are calculated using an objec-

tive function. Then individuals having high objective val-

ues are randomly selected from the current population and

are modified to generate a new population. In QSPR

studies, it is important to obtain a model with a few

numbers of structure-based molecular descriptors because

this will lead to a simple and interpretable model. One of

the most commonly used methods for variable selection is

the GA-MLR. GA is an evolutionary method widely used

for complex optimization problems in several fields such as

QSPR [20, 35–38].

In this work, we used the GA-MLR algorithm for vari-

able selection. In order to calculate GA-MLR, a program

was written based on MATLAB software. A total of 466

descriptors were initially calculated by Dragon software for

the entire data set of 65 compounds. The total number of

descriptors was reduced to 403 descriptors, by eliminating

the collinear descriptors (correlation coefficient is less than

0.1). The GA applied to the variable selection in this work

uses a binary representation as the coding technique for the

given problem; the presence or absence of a descriptor in a

chromosome is coded by 1 or 0 [39–41]. The GA performs

its optimization by variation and selection via the evalua-

tion of the fitness function g. The fitness function that we

used was the one that was proposed by Depczynski et al.

[40]. As described in the data set section, the samples were

randomly selected to the calibration, prediction and vali-

dation sets (35 calibration samples, 15 prediction samples

and 15 validation samples). The root-mean-square errors of

calibration (RMSEC) and prediction (RMSEP) were cal-

culated and the fitness function was calculated as Eq. 1.
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Table 1 Chemical structures of

65 15C5 ethers

O O

O

O

O

R

No. Structure No. Structure

1 R=H 19 R=CH2O–[2-CH2=C(CH3)–CH2OC6H4]

2 R=C6H13 20 R=CH2O-[2-(CH CHCH2 )-OC6H4]

O

3 R=C8H17 21 R=CH2O-[2-(CH C(CH3)-CH2)OC6H4]

O

4 R=C10H21 22 R=CH2OCH2CH(OH)CH3

5 R=CH2OH 23 R=CH2OCH2CH(OH)CH2OH

6 R=CH2OCH3 24 R=CH2OCH2CH(OC6H13)–CH2OC6H13

7 R=CH2OCH2CH=CH2 25 R=CH2OCH2CH2OCH3

8 R=CH2O(CH3)3 26 R=CH2OCH2CH2OC4H9

9 R=CH2OC8H17 27 R=CH2OCH2CH2OC8H17

10 R=C6H5 28 R=CH2O(CH2CH2O)2CH3

11 R=CH2OCH2C6H5 29 R=CH2O(CH2CH2O)2C8H17

12 R=CH2O–[2-CH3OC6H4] 30 R=CH2O(CH2CH2O)3H

13 R=CH2O–[3-CH3OC6H4] 31 R=CH2O(CH2CH2O)3CH3

14 R=CH2O–[4-CH3OC6H4] 32 R=CH2NHC(CH3)3

15 R=CH2OCH2–[2-CH3OC6H4] 33 R=CH2NHC6H13

16 R=CH2O–[2-NO2C6H4] 34 R=CH2NHC6H5

17 R=CH2O–[4-NO2C6H4] 35 R=CH2NHCH2CH2NH2

18 R=CH2O–[2-CH2=CH–CH2OC6H4]

O O

O

O

O

R1

R2

36 R1=CH3; R2=CH2Br 55 R1=C6H13; R2=CH2(OCH2CH2)2OCH3

37 R1=CH3; R2=CH2OCH2CH2OH 56 R1=C6H13; R2=CH2(OCH2CH2)3OCH3

38 R1=CH3; R2=CH2(OCH2CH2)2OH 57 R1=C6H13; R2=CH2OC6H13

39 R1=CH3; R2=CH2(OCH2CH2)3OH 58 R1=C6H13; R2=CH2OC8H17

40 R1=CH3; R2=CH2OCH2CH2OCH3 59 R1=C6H13; R2=CH2OCH2CH2OC8H17

41 R1=CH3; R2=CH2O(CH2CH2O)2CH3 60 R1=C6H13; R2=CH2(OCH2CH2)2OC8H17

42 R1=CH3; R2=CH2O(CH2CH2O)3CH3 61 R1=C8H17; R2=CH2Br

43 R1=CH3; R2=CH2O(CH2)3OCH3 62 R1=C8H17; R2=CH2OCH2CH2OCH3

44 R1=CH3; R2=CH2OC6H13 63 R1=C8H17; R2=CH2(OCH2CH2)2OCH3

45 R1=CH3; R2=CH2OC8H17 64 R1=C8H17; R2=CH2(OCH2CH2)3OCH3
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g ¼
�
ðmc � n� 1ÞRMSEC2 þmpRMSEP2
� �

=

mc þmp � n� 1
� ��1=2

ð1Þ

where mc and mp are the number of compounds in the

calibration and prediction set, respectively, and n repre-

sents the number of selected variables.

In this paper, the size of the population is 100, the

probability of crossover is 0.7 in two points, the probability

of mutation is 0.01 and the number of evolution genera-

tions is 100. The validity of the resulted regression model

was evaluated by predicting the property of the molecules

in the validation set.

Applicability domain

A crucial problem of a QSPR model is the applicability

domain (AD). Not even a robust, significant, and validated

QSPR model can be expected to reliably predict the mod-

eled property for the entire universe of chemicals. In fact,

only the predictions for chemicals falling within this domain

can be considered reliable and not model extrapolations.

A way of defining the AD of a QSPR model is according

to the leverage of a compound. The leverage h [42] of a

compound measures its influence on the model. The

leverage of a compound in the original variable space is

defined as:

hi ¼ xT
i XTX�1
� �

xi i ¼ 1; . . .; nð Þ ð2Þ

where xi is the descriptor vector of the considered

compound and X is the model matrix derived from the

calibration set descriptor values. The warning leverage h*

is defined as follows:

h� ¼ 3�
X

i

hi=n ¼ 3� p0=n i ¼ 1; . . .; nð Þ ð3Þ

where n is the number of calibration compounds and p0 is

the number of model parameters.

To visualize the AD of a QSPR model, the plot of

standardized residuals versus leverage values (h) can be

used for an immediate and simple graphical detection of

both the response outliers (i.e., compounds with cross

validated standardized residuals greater than 2.5 standard

deviation units, [2.5r) and structurally influential chemi-

cals in a model (h [ h*).

Through the leverage approach, it is possible to verify

whether a new chemical will lie within the structural model

domain or outside the domain. A compound with high

leverage in a QSPR model would reinforce the model if the

compound is in the calibration set, but such a compound in

the prediction and validation sets could have unreliable

predicted data, the result of substantial extrapolation of the

model [43].

Validation of the model

Leave one out cross validation (LOO-CV) is one of the

QSPR model internal validation. The predictability of the

QSPR model is determined using the LOO-CV method.

The cross-validated explained variance (Q2
cv) is calculated

by the following equation:

Q2
cv ¼ 1�

Pcal
i¼1 yi � ŷið Þ2

Pcal
i¼1 yi � �yð Þ2

ð4Þ

where yi, ŷi and �y are, respectively, the measured, pre-

dicted, and averaged (over the entire data set) values of the

dependent variable, respectively; the summations cover all

the compounds in the validation set.

The LOO-CV approach is not sufficient to assess

robustness and predictivity. The QSPR model developed

using only calibration set chemicals is then applied to the

external validation set chemicals to verify, more reliably,

the predictive ability of the model.

Table 1 continued
46 R1=CH3; R2=CH2OCH2CH2OC8H17 65

O O

O

O

O

CH3

CH3

H3C

H3C

CH3

47 R1=CH3; R2=CH2(OCH2CH2)2OC8H17

48 R1=CH3; R2=CH2OC12H25

49 R1=CH3; R2=CH2OCH2CH2OC12H25

50 R1=CH3; R2=CH2(OCH2CH2)2C12H25

51 R1=CH3; R2=CH2OCH2–[2-C5H4N]

52 R1=C6H13; R2=CH2O[2-CH3OC6H4]

53 R1=C6H13; R2=CH2Br

54 R1=C6H13; R2=CH2OCH2CH2OCH3
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Table 2 Molecular descriptors, experimental and predicted logK of 15C5 ethers complexes

No. GATS6e H1u HATS8m R7u nCrR2 Experimental Predicted Residual

1 1.151 1.895 0.022 0.997 0 3.27 3.02 0.25

2 1.207 2.041 0.034 1.176 0 3.2 3.13 0.07

3 1.184 2.14 0.028 1.072 0 3.2 3.13 0.07

4 1.166 2.216 0.024 1.064 0 3.18 3.2 -0.02

5 1.112 1.955 0.042 1.093 0 3.1 3.03 0.07

6 1.171 1.968 0.04 1.162 0 3.03 3.07 -0.04

7 1.202 2.067 0.047 1.084 0 3.12 2.97 0.15

8 1.414 2.126 0.046 1.144 0 2.95 2.9 0.05

9 1.287 2.208 0.032 1.053 0 3.18 3.04 0.14

10 1.161 2.249 0.062 1.249 0 3.3 3.13 0.17

11 1.257 2.313 0.049 1.017 0 2.97 2.96 0.01

12 1.185 2.34 0.063 1.142 0 3.25 3.05 0.2

13 1.27 2.319 0.052 0.967 0 2.89 2.88 0.01

14 1.393 2.094 0.044 0.997 0 3 2.77 0.23

15 1.287 2.34 0.038 0.933 0 3.04 2.94 0.1

16 1.157 2.241 0.072 0.984 0 2.83 2.82 0.01

17 0.996 2.109 0.052 0.949 0 2.72 2.98 -0.26

18 1.237 2.414 0.029 0.892 0 3.07 3.03 0.04

19 1.191 2.46 0.028 0.974 0 3.04 3.17 -0.13

20 1.217 2.488 0.044 1.043 0 3.03 3.12 -0.09

21 1.245 2.56 0.03 0.962 0 3.02 3.15 -0.13

22 1.095 2.229 0.051 1.057 0 3.14 3.07 0.07

23 1.075 2.153 0.049 1.096 0 3 3.1 -0.1

24 1.384 2.621 0.026 0.935 0 2.97 3.08 -0.11

25 1.158 2.102 0.042 1.072 0 3.05 3.04 0.01

26 1.237 2.125 0.027 1.014 0 3.09 3.04 0.05

27 1.257 2.189 0.022 1.004 0 3.22 3.07 0.15

28 1.161 2.12 0.03 1.015 0 3.13 3.07 0.06

29 1.242 2.289 0.019 0.952 0 3.23 3.1 0.13

30 1.139 2.254 0.029 0.971 0 3.04 3.11 -0.07

31 1.164 2.341 0.024 0.949 0 3.09 3.14 -0.05

32 1.44 2.111 0.047 1.178 0 2.79 2.9 -0.11

33 1.233 1.963 0.028 1.056 0 2.82 3 -0.18

34 1.233 2.131 0.058 1.072 0 2.91 2.89 0.02

35 1.185 2.056 0.046 1.161 0 2.92 3.06 -0.14

36 1.125 2.134 0.153 1.115 1 2.86 2.8 0.06

37 1.044 2.442 0.064 1.359 1 3.88 3.82 0.06

38 1.057 2.51 0.051 1.122 1 3.88 3.7 0.18

39 1.069 2.535 0.04 1.134 1 3.73 3.79 -0.06

40 1.077 2.516 0.058 1.24 1 3.87 3.76 0.11

41 1.086 2.475 0.039 1.103 1 3.89 3.73 0.16

42 1.094 2.538 0.033 1.093 1 3.87 3.78 0.09

43 1.18 2.502 0.053 1.203 1 3.48 3.67 -0.19

44 1.261 2.361 0.041 1.138 1 3.57 3.57 0

45 1.246 2.522 0.036 1.195 1 3.54 3.74 -0.2

46 1.21 2.526 0.029 1.102 1 3.75 3.73 0.02

47 1.196 2.431 0.03 1.114 1 3.88 3.7 0.18

48 1.224 2.417 0.03 1.136 1 3.42 3.69 -0.27
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The formula for the calculation of Q2
ext is:

Q2
ext ¼ 1�

Pvalid
i¼1 yi � ŷið Þ2

Pvalid
i¼1 yi � �ycalð Þ2

ð5Þ

where yi and ŷi are respectively the measured and predicted

(over the validation set) values of the dependent variable,

and �ycal is the averaged value of the property for the cali-

bration set; the summations cover all the compounds in the

validation set.

The Q2 value is good tests for evenly distributed data,

but they are not always reliable for unevenly distributed

datasets; instead RMSEs (Root Mean Squared Errors)

provide a more reliable indication of the fitness of the

model, independently of the applied splitting. Other useful

parameters to be considered are the RMSEs calculated on

different sets: on calibration (RMSEC), prediction

(RMSEP) and validation (RMSEV). RMSE is calculated as

in Eq. 6:

RMSE ¼
Pn

i¼1 yi � ŷið Þ2

n

 !1=2

ð6Þ

where yi and ŷi are respectively the measured and predicted

values of the property; n is the number of compounds in

each set of data.

It is important to note that RMSE values must not

only be low but also as similar as possible for the cal-

ibration, prediction and validation sets: this suggests that

the proposed model has both predictive ability (low

values) as well as sufficient generalizability (similar

values) [44].

After model formation, statistical tests were performed

using the best subset of descriptors to find any outliers that

existed in the data set.

Furthermore, a variance inflation factor (VIF) analysis

was performed to see if multicollinearities existed between

the descriptors in the model. The VIF value is calculated

from 1=1� r2; where r2 is the multi correlation coefficient

of one descriptor’s effect regressed on the remaining

molecular descriptors. Models are not accepted if they

contained descriptors with VIFs over a value of 10. This

ensured that the squared multicollinearity coefficient for

each descriptor in the model did not exceed 0.90 [45, 46].

Finally, the model was validated using the external vali-

dation set.

Results and discussion

To select important variables for describing the stability

constants, GA-MLR was applied. For obtaining best QSPR

model, first, the best one molecular descriptors model was

obtained (the model with high fitness function value). Then

the best two molecular descriptors model was obtained.

This procedure was repeated to obtain the best three, four,

five and so on molecular descriptors model. The best

multivariate linear model has five parameters because

increase in the number of molecular descriptors has no

significant effect on the accuracy of the best model. The

Table 2 continued

No. GATS6e H1u HATS8m R7u nCrR2 Experimental Predicted Residual

49 1.185 2.5 0.029 1.188 1 3.75 3.81 -0.06

50 1.169 2.495 0.029 1.188 1 3.89 3.82 0.07

51 1.121 2.387 0.059 1.199 1 3.58 3.62 -0.04

52 1.032 2.361 0.058 1.24 1 3.79 3.72 0.07

53 1.182 2.154 0.208 1.282 1 2.74 2.55 0.19

54 1.161 2.519 0.062 1.315 1 3.9 3.74 0.16

55 1.152 2.577 0.047 1.213 1 3.91 3.77 0.14

56 1.147 2.533 0.042 1.203 1 3.71 3.78 -0.07

57 1.373 2.568 0.042 1.181 1 3.56 3.61 -0.05

58 1.369 2.576 0.035 1.161 1 3.39 3.64 -0.25

59 1.311 2.616 0.031 1.11 1 3.62 3.68 -0.06

60 1.28 2.581 0.031 1.14 1 3.75 3.72 0.03

61 1.172 2.14 0.15 1.218 1 2.79 2.88 -0.09

62 1.157 2.512 0.052 1.242 1 3.82 3.74 0.08

63 1.146 2.541 0.046 1.258 1 3.86 3.81 0.05

64 1.138 2.56 0.044 1.277 1 3.75 3.86 -0.11

65 1.217 2.109 0.054 1.744 0 3.34 3.55 -0.21
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best significant relationship for the logK 15C5 ethers has

been deduced to be

Log K ¼ 2:26 �0:63ð Þ � 0:75 �0:20ð ÞGATS6e

þ 0:44 �0:19ð ÞH1u� 6:71 �0:96ð ÞHATS8m

þ 0:94 �0:31ð ÞR7uþ 0:43 �0:091ð ÞnCrR2

ð7Þ

nCalibration ¼ 35; nPrediction ¼ 15; nValidation ¼ 15Q2
Calibration

¼ 0:93; Q2
LOO ¼ 0:88; Q2

Prediction

¼ 0:84; Q2
Validation ¼ 0:82; RMSEC

¼ 0:104; RMSECV ¼ 0:133; RMSEP

¼ 0:140; RMSEV ¼ 0:153

Table 3 indicates the linear correlation-coefficient matrix

for logK and five descriptors in the MLR model. The MLR

model results are given in Table 4; b and Sb are the non-

standardized coefficient of descriptors and standard error of

coefficient, respectively, and bs is the standardized regres-

sion coefficient. The molecular descriptors, descriptor type,

definition of descriptors, and coefficient of descriptors are

presented in Table 4. In Fig. 1, the plot of predicted logK by

the MLR model employed against the experimental logK is

represented. MLR outlier and leverage are indicated in

Fig. 2.

GATS6e is one of the Geary Autocorrelation descrip-

tors. However, the general index of spatial autocorrelation

that is applied to a molecular graph, can be defined as:

GATSdw ¼ n� 1ð Þ=2Þ Að Þ=ðBð Þ

A ¼ 1=Dð Þ
Xn

i¼1

Xn

g¼1

dijðwi � wjÞ2
 !

;

B ¼
Xn

i¼1

ðwi � �wÞ2

ð8Þ

where wi is any atomic property, �w is its average value on

the molecule, A is the atom number, d is the considered

topological distance (i.e. the lag in the autocorrelation

terms), dij is a Kronecker delta (dij = 1 if dij, = d, zero

otherwise). D is the sum of the Kronecker deltas, i.e. the

number of vertex pairs at distance equal to d [47].

H1u, HATS8m, and R7u descriptors are in GETAWAY

types descriptors. GETAWAY types of descriptors have

been designed with the main purpose of matching the 3D-

molecular geometry and are derived from the elements hij

of the Molecular Influence matrix (H), obtained through the

values of atomic Cartesian coordinates. The diagonal ele-

ments of H (hii) are called leverages, and are considered to

represent the influence of each atom on the shape of the

molecule. For instance, the mantle atoms always have

higher hii values than atoms near the molecule center, while

each off-diagonal element hij represents the degree of

accessibility of the jth atom to interactions with the ith

atom. The influence/distance matrix (R) involves a com-

bination of the elements of the H matrix with those of the

Geometric Matrix (G) [48, 49].

nCrR2 is one of the chemical functional group

descriptors and indicates the number of ring quaternary C.

The negative sign of GATS6e and HATS8m in MLR

model shows that increasing these two parameters cause

the logK decreases. Meanwhile, H1u, R7u, and nCrR2 have

a positive effect on logK.

The standardized regression coefficients reveal the sig-

nificance of an individual descriptor presented in the

regression model. Obviously, in Table 4, the effect of the

number of ring quaternary C on logK of the 15C5 com-

plexes is more significant than that of the other descriptors.

The order of significance of the other descriptors is

HATS8m [ R7u [ H1u [ GATS6e.

The inter-correlation of the descriptors used in the MLR

model (Table 3) was low (below 0.66) which is in con-

formity to the study that for a statistically significant

model, it is necessary that the descriptors involved in the

equation should not be inter-correlated with each other

[50]. To further check the inter-correlation of descriptors

VIF analysis was performed. The VIF for each descriptor is

summarized in Table 4. As one can see, the VIF values are
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Fig. 1 The plot of the predicted versus experimental logK values for

calibration, prediction, and validation sets of complexes of 15C5 with

Na?

Table 3 Linear correlation-coefficient matrix for the five descriptors

and logK in the MLR model

GATS6e H1u HATS8m R7u nCrR2 Log K

GATS6e 1.00

H1u 0.01 1.00

HATS8m -0.19 -0.17 1.00

R7u -0.17 0.12 0.33 1.00

nCrR2 -0.23 0.66 0.27 0.48 1.00

Log K -0.31 0.69 -0.25 0.45 0.77 1.00
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all less than 6.0, indicating the stability of the equations

constructed (according to statistics principle, a value of 1.0

is indicative of no correlation, while a value of under 10.0

is statistically satisfactory) [45, 46].

On analyzing the model AD in the Williams plot of

MLR model (Fig. 2) only compound number 48 in the

prediction set was identified as an outlier but it belongs to

the model AD, while compound numbers of 36 and 61 of

calibration set, compound number 65 of prediction set, and

compound number 53 of validation set are chemicals with

high leverage.

Almost all the high-leverage compounds contain a

bromine atom. According to these observations, the model

appears to be applicable and predictive to diverse 15C5

ethers; however, particular attention should be paid to

halogenated compounds, since they might fall outside the

structural AD of the model. Outlier compound belongs to

the model AD, this erroneous prediction could probably be

attributed to wrong experimental data rather than to

molecular structure.

Conclusions

A new reliable and accurate MLR–QSPR model was pro-

posed for prediction of the stability constants (logK) of the

complexes of 15C5 ethers with Na?. The model was

strongly verified for its predictive power using different

internal and external validation techniques. The selection

of the best variables from among the available descriptors

was performed by MLR-GA, and resulted in the combi-

nation of GATS6e, H1u, HATS8m, R7u, and nCrR2 Dra-

gon descriptors. The predictive ability of this combination

of variables was with high Q2
ext (0.82) and low RMSEV

(0.15), which highlights the importance of these variables

in modeling the studied property.

The selected variables for QSPR model are confirmed to

be the most related to the studied property, as already

observed in the literature. Even in spite of the model shows

a large AD, particular attention should be paid when this

QSPR is applied to halogenated 15C5 ethers.
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